Lattice QCD with open boundary conditions

Stefan Schaefer

CFRN

May 14, 2012

Based on work done in collaboration with Martin Lüscher

Problem

Rising cost as a o 0

- Need more points for fixed volume $L = \text{const} \rightarrow N = L^4 a^{-4}$.
- Monte Carlo time scales as a^{-2} .
- Topological sectors emerge → simulation gets stuck

Solutions

- Fix topological sector.
 - Loss of unitarity.
 - Deal with 1/V corrections.
- Open the lattice.

Scaling in pure gauge theory

- Topological charge shows dramatic slow down: periodic b.c.
- Pure gauge theory

SOMMER, VIROTTA, ST.S'10

Topological Charge

Slowing down

- Topological sectors emerge in continuum limit.
- Simulation gets stuck.

Fermions

- Some folklore that fermions solve the problem.
- \blacksquare Distribution of Q gets narrower at light quark mass.
- Different effective gluonic action
 - → influences coefficient.
- Slow topology observed, e.g., by MILC, ALPHA.

Open boundary conditions

Proposed solution

- open boundary condition in time direction
 → same transfer matrix, same particle spectrum
- periodic boundary condition in spatial directions
 - → momentum projection possible

Open boundary conditions

- Periodic boundary conditions in space.
- Neumann boundary conditions in time.

■ Gauge fields

$$F_{0k}|_{x_0=0} = F_{0k}|_{x_0=T} = 0, \quad k = 1, 2, 3$$

■ Fermion fields

$$P_{+}\psi(x)|_{x_{0}=0} = P_{-}\psi(x)|_{x_{0}=T} = 0$$
 $P_{\pm} = \frac{1}{2}(1 \pm \gamma_{0})$ $\bar{\psi}(x)P_{-}|_{x_{0}=0} = \bar{\psi}(x)P_{+}|_{x_{0}=T} = 0$

On shell improvement

Boundary terms

Gauge action

$$\delta S_{G,b} = rac{1}{2g_0^2} (c_G - 1) \sum_{p_s} ext{tr} (1 - U(p_s))$$

Fermion action

$$\delta S_{F,b} = a^3 (c_F - 1) \sum_{\vec{x}} \left(\bar{\psi}(x) \psi(x) |_{x_0 = a} + \bar{\psi}(x) \psi(x) |_{x_0 = T - a} \right)$$

- Very similar to Schrödinger functional.
- If one stays clear of boundaries, might not be needed.

Pure gauge theory: $\tau_{\rm int}$ vs a^{-2}

M. LÜSCHER, ST.S, JHEP 1107 (2011) 036

- $\blacksquare L = const$
- \blacksquare scaling linear in a^{-2} .
- no effect of sector forming visible.

Pure gauge theory: Periodic vs Open boundaries

- Open boundary conditions solve problem.
- Scaling of the topological charge same as other observables.
- \blacksquare Already at typical a sizable improvement.

Large T

Finite volume

- For $T \to \infty$ the effect of the b.c. vanishes.
- But also the effect on observables vanishes as V^{-1} .

Dependence on T

- Width of distribution of Q is $\propto \sqrt{TL^3}$.
- Change of charge through boundary $\propto \sqrt{L^3}$. → expect $\tau_{\rm int} \propto T$, for random walk
- For each T, there is an a from which the boundary tunneling dominates over the bulk tunneling.

Analysis

- Physics in the center as with period. bound. cond.
- \blacksquare Boundary effects decay with lightest state of vaccuum quantum numbers. $\rightarrow 2\pi$
- How is the effect in actual simulations?

Setup

Action

- $lacksquare N_{
 m f}=2+1$ NP improved Wilson fermions
- Iwasaki gauge action
- 64×32^3 lattice with a = 0.09fm
- studied extensively by PACS-CS
- $lacksquare m_\pi = 200 ext{MeV}; m_\pi L = 3$

Reweighting

- Simulate fermion action with spectral gap.
- Include reweighting factor in measurement.
- Stabil simulation, no ergodicity problems.

Yang-Mills action density

- Gauge action density from smoothed links.
- \blacksquare Boundary effects decay with mass \approx 1GeV.
- $ightharpoons m_\pi pprox 200 {
 m MeV}.$

Boundary conditions

Open boundary conditions

Dirichlet boundary condtions for hadron propagator

■ With periodic bc get $\cosh(m(x_0 - y_0))$ behavior

$$C(x,y) \propto \sinh(m(T-x_0))$$
 for $x_0 > y_0$

Pseudoscalar Correlator

- lacksquare source at $y_0/a=1$
- \blacksquare exponential fall-off $2/m_{\pi}$ away from source/boundary

Pseudoscalar Correlator: effective mass

■ Mass agrees with PACS-CS (interpolated) value

Effect of the position of the source

- Source on boundary couples strongy to excited states
- Plateau starts about at same time slice.

Conclusions

- Simulations with reduced rate of tunneling cannot produce accurate results.
- Open boundary conditions in time solve the problem of frozen topology.
- Fermion simulations without particular problems.
- Measurements $2/m_{\pi}$ from boundary.
- Reweighting makes Wilson simulations safe.